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o o= %, B = 1: The mid-point method (or second-order Runge-Kutta)
has exactly the same stability properties as the Heun method for linear
models. Second order accurate and weakly unstable.

e o = 1, § = 1: The forward-backward, Euler-backward or Matsuno
method. The forward method is used to predict ,,; and then the
result used in an explicit backward step. First order accurate, condi-
tonally stable (Atf < 1) and damping (maximized at Atf = 1/1/2).

4.9.1 Derivation of Runge-Kutta methods

We will now analyze the accuracy of the above two-stage schemes.
The Taylor series expansion for u™*! about t,, is:

1 1
"t = u" + At (t,) + 5A#u"(tn) + 5Alti”u/”(tn) + ...
Since u/(t,) = g(u", t,) we can write:

!

g
09+ u'0yg = 09+ gOug
" = di(0,9 + 9049) = Oug + 2909 + 970wy + 04909 + 909"

"

so that 1
uTT =t 4 Atg + S AP (99 + 90ug9) + O(AE) (4.15)

Now we write the algorithm in a series of steps as follows:

g = g(u"t,)
up = u"+ alAtg
g2 = g(uy,t, +IAL)
u"tt = u" + y Atgy 4 e Atgs
where we have generalized the algorithm further than before by introducing
the arbitrary parameters a;, 9, v; and 5. The objective now is to manipulate

the last step into a form corresponding to (4.15). On inspecting the last step,
we see that we need a Taylor expansion of g which is:

g2 = g(u" + altgy,t, + 6AtL)

= g(u" + altgy, t,) + 6ALDg(u" + altgy, t,) + O(AL?)
= g(u™t,) + aAtg0,9(u" t,) + SALtd,g(u", t,) + O(At?)
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Substituting into the last step of the algorithm we get:
utth =+ At (11 +92) g+ AtPre (adig + 6g0.9) + O(AL)

To make terms match with those in equation (4.15) we must chose:

Nty =1
1

Yo = 5

1

V20 = 5

in which case the scheme is then of order O(At?). These three equations in
four unknowns can be solved in terms of jsut one parameter:
1

1
a5 72 20 v N 20

The algorithm can now be written:

g1 = g(un’ tn)
u, = u"+ altgy
g2 = g(uy,t, +aAt)

1 1
u"tt = ut (1 — —) Atgy + —Atgs
2« 2a

which corresponds to the two-stage method if we set § = i in equation
(4.14). For the two-stage method we found that stability is conditional on
af > % and that if af = % then the two-stage method was weakly unstable
due to a O(At*) term. This means that the second order accurate Runge-

Kutta methods are weakly unstable.

4.9.2 Higher order Runge-Kutta

Derivation of higher order Runge-Kutta methods uses the same technique.
However, the pages of algebra entailed in find the coefficients are unreveal-
ing. Instead, we supply the “Maple” code to illustrate how to obtain the
coefficients:

> n:=3;
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> alias( G=g(t,u(t)), Gt=D[1](g) (t,u(t)), Gu=D[2] (g) (t,u(t)),
Gtt=D[1,1](g) (t,u(t)), Gtu=D[1,2](g) (t,u(t)), Guu=D[2,2] (g) (t,u(t)) );
D(w) :=t->g(t,u(t));

TaylorExpr:=(mtaylor(u(t+h),h,n+1)-u(t))/h;

gl:=mtaylor( g(t,u(t)) ,h,n);

g2:=mtaylor( g(t+betal[1]*h,u(t)+h*alphalll*gl) ,h,n);

g3:=mtaylor( g(t+beta[2]*h,u(t)+h*alphal2,1]*gl+h*alphal[2,2]*g2) ,h,n);
RungeKuttaExpr:=( gamma[1]*gl+gamma [2]*g2+gamma[3]*g3 ) ;
eq:=simplify(RungeKuttaExpr-TaylorExpr) ;

eqns:={coeffs(eq, [h,G,Gt,Gu,Gtt,Gtu,Guul ) };

indets(eqns);

solve(eqns,indets(eqns)) ;

V VV V V V V V V VvV

Extending the above script to fourth order involves adding the necessary
definitions for uz and g4. The most common fourth order method is:

g1 = g(unvtn)
1 1
g2 = gu"+ §At917 tn, + EAt)

1 1
g3 = g(u”+§Atgg,tn+§At)
g1 = g(u"+ Atgs, t, + At)

1
W= + éAt (91 + 292 + 2g93 + 94)

and is widely used. It is both accurate and near neutrally stable. Higher than
fourth order Runge-Kutta methods exist and can be found in text books but
are rarely used in models of the ocean or atmosphere.

4.10 Side-by-side comparison

A simple P-Z model is
N = N—-P—Z7

uPN
apr = —gZP
t N+nN, 7
0Z = agZP—dZ (4.16)

where Ny = 5, N, = 0.1, v = 0.03, g = 0.2, a = 0.4 and d = 0.08 are all

constants.
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A slightly different model has a wider separation of inherent time-scales
and behaves more non-linearly:

N = MN—-P—-Z7

uPN gZ P
0P = N+N, P+P,

agZ P
J = —dZ 4.1
07 = $% (4.17)

where N, =5, N,=0.1, P,=0.5,u=0.01, g =0.1,a =1 and d = 0.08 are
all constants.
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Figure 4.17: Solutions to the P-Z model (equations 4.16) obtained using a
“small” At = 1 and the largest “stable” At for each scheme.
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Figure 4.18: Solutions to the P-Z model (equations 4.17) obtained using a
“small” At =1 and the largest “stable” At for each scheme.



